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Abstract

BACKGROUND: In-field weed detection in wheat (Triticum aestivum L.) is challenging due to the occurrence of weeds in close
proximity with the crop. The objective of this research was to evaluate the feasibility of using deep convolutional neural net-
works for detecting broadleaf weed seedlings growing in wheat.

RESULTS: The object detection neural networks, including CenterNet, Faster R-CNN, TridenNet, VFNet, and You Only Look Once
Version 3 (YOLOv3) were insufficient for weed detection in wheat because the recall never exceeded 0.58 in the testing dataset.
The image classification neural networks including AlexNet, DenseNet, ResNet, and VGGNet were trained with small (5500 neg-
ative and 5500 positive images) or large training datasets (11 000 negative and 11 000 positive images) and three training
image sizes (200 × 200, 300 × 300, and 400 × 400 pixels). For the small training dataset, increasing image sizes decreased
the F1 scores of AlexNet and VGGNet but generally increased the F1 scores of DenseNet and ResNet. For the large training data-
set, no obvious difference was detected between the training image sizes since all neural networks exhibited remarkable clas-
sification accuracies with high F1 scores (≥0.96). All image classification neural networks exhibited high F1 scores (≥0.99) when
trained with the large training dataset and the training images of 200 × 200 pixels.

CONCLUSION: CenterNet, Faster R-CNN, TridentNet, VFNet, and YOLOv3 were insufficient, while AlexNet, DenseNet, ResNet,
and VGGNet trained with a large training dataset were highly effective for detection of broadleaf weed seedlings in wheat.
© 2021 Society of Chemical Industry.
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1 INTRODUCTION
Wheat (Triticumaestivum L.) is one of themost important crops in the
world and contributes daily sources of dietary calories for a large pro-
portion of the world's population.1 Weed competition is a serious
constraint for wheat production worldwide.2 For example, a density
of 10 intra-row white mustard (Sinapis alba L.) plants per square
meter reduced wheat yield up to 32%.3 Spraying herbicides is the
most commonly employed strategy for weed control,4,5 although
the cases of herbicide resistance in wheat have been increasingly
reported over the past few decades.6 Weeds typically show a ran-
dom, patchy distribution in fields, but postemergence (POST) herbi-
cides are broadcast-applied for weed control uniformly throughout
the field, leading to herbicide applications in areas where it is not
necessary.
Precision herbicide application, based on an accurate, reliable,

and automatic weed detection technology, can substantially
reduce herbicide input and weed control costs.7,8 Previous
researchers explored a variety of sensing methods, such as
fluorescence,9–11 visible or near-infrared spectroscopy,12,13

hyper- or multi-spectral imaging,14,15 and machine vision,16–18

for weed detection. Nevertheless, the introduction of smart

sprayers into practical farming, particularly for wheat, is still lack-
ing. The major obstacle limiting the widespread adoption of
automatic weed control is the absence of robust sensing tech-
nology to provide reliable weed detection.7 In wheat, weed
detection is especially difficult due to the presence of a variety
of weed species growing in close proximity with the crop.
In recent years, machine learning, particularly deep convolu-

tional neural networks (DCNNs) that are used in conjunction with
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a graphics processing unit (GPU), has demonstrated remarkable
capability in various scientific applications, such as self-driving
cars,19 speed recognition,20 natural language processing,21 and
precisionmedicine.22 DCNNs exhibit a tremendous ability to learn
and extract complex features from images19 and have recently
emerged as a powerful tool in various agricultural domains, such
as crop yield prediction,23 counting fruit number,24 and plant phe-
notyping.25 For example, Ghosal et al.25 developed DCNNs model
that can reliably classify and identify abiotic (chemical injury and
nutrient deficiency) and biotic (bacterial and fungal diseases)
stresses in soybean [Glycine max (L.) Merr.].
The potential for DCNNs for real-time and reliable detection of

weeds has demonstrated in various cropping systems such as
corn (Zea mays L.),26 dormant or actively growing turfgrass,17,18

potato (Solanum tuberosum L.),27 plastic-mulched vegetables,28

sunflower (Helianthus annuus L.),26 and soybean.29 Although the
endeavor of using DCNNs for weed detection is relatively new,
previous studies achieved high accuracies (≥ 98%) for classifying
images containing different turfgrass species or weeds growing
in turfgrass,18,30 and for detecting broadleaf and grass weeds
growing in soybean.29 Recently, Su et al.31 proposed a DCNNs-
based method that can provide real-time detection of inter-row
ryegrass (Lolium spp.) in wheat. Unfortunately, the detection of
intra-row weeds, especially at the seedling growth stage, is still a
challenging task in wheat.
The capability of machine learning models for detecting weeds

at the seedling growth stage is important because POST herbi-
cides are typically more effective for controlling weeds at the ear-
lier rather than later stages.32 In addition, herbicide rates can be
adjusted according to weed growth stages to achieve better con-
trol.33 However, the feasibility of using DCNNs for detection of
weeds at the seedling growth stage of wheat has not been well
explored. In this study, we investigate the potential for using
DCNNs-basedmethods for detection of broadleaf weed seedlings
in wheat.

2 MATERIALS AND METHODS
2.1 Image acquisition
Training and testing images were takenmultiple times at two sep-
arate fields in Yangzhou University Pratacultural Science Experi-
ment Station, Yangzhou, Jiang Su, China (32°200N, 119°230E)
from December 3, 2020 to December 12, 2020. For both fields,
where the images were acquired, cleavers (Galium aparine L.),
crickweed (Malachium aquaticum L.), and shepherdʼs purse [Cap-
sella bursa-pastoris (L.) Medik] were themajor broadleaf weed spe-
cies observed. Images were collected approximately 2 months
after planting wheat. Images (4300 × 2418 pixels) were acquired
using a digital camera (Panasonic® DMC-ZS110 Xiamen, Fujian,

China) equipped with 10X Leica Vario-Elmarit Lens (F2.8–5.9 aper-
ture) at an auto-exposure setting. Images were acquired at a
ground sampling resolution of 0.05 cm pixel−1 and were acquired
during daytime from 9:00 a.m. to 5:00 p.m. under various lighting
conditions such as clear, cloudy, and partially cloudy skies.

2.2 Object detection
For training object detection neural networks, all training and
testing images were cropped to 2560 × 1440 pixels using Irfan-
view (version 5.50, Irfan Skijan, Jaice, Bosnia). A total of 906 images
containing broadleaf weeds growing in wheat were used in the
training dataset, 90 (10%) of which were randomly selected as
the validation dataset. A total of 30 images containing weeds
while growing in wheat were randomly selected and used as
the testing dataset (Table 1).
The object detection architectures investigated in the present

study included CenterNet,34 Faster R-CNN,35 Trident Network
(TridentNet),36 Variable Filter Net (VFNet),37 and You Only Look
Once (YOLO) version 3 (YOLOv3),38 CenterNet utilizes keypoint
estimation to identify center points and meanwhile regresses to
all other object properties, including three-dimensional
(3D) location, even pose, orientation, and size.34 Faster R-CNN
shares the convolutional features of Region Proposal Network
and Fast R-CNN and thus enables a near real-time frame detection
speed.35 TridentNet can generate scale-specific feature maps
using a uniform representational power.36 TridentNet was con-
structed using a parallel multi-branch architecture in which each
branch has different receptive fields but shares the same transfor-
mation parameters.36 VFNet captures a hierarchy of features
through the application of variable filter sizes along with the
audio spectrograms.37 VFNet was originally designed for accent
classification37 but its feasibility for weed detection was evaluated
in the present study. YOLOv3 was developed based on YOLO39

and YOLO version 2.40 YOLO is a single-stage deep learning archi-
tecture that utilizes independent logistic classifiers and generates
multi-labeled bounding boxes.38 The inference time was the pri-
ority when YOLO was designed.38

The image area containing weeds was annotated using LABELIMG

(an open source software available at https://github.com/tzutalin/
labelImg). The object detection neural networks detect the tar-
gets based on bounding box coverage. The numbers of bounding
box annotations were 5261, 510, and 373 for training, validation,
and testing datasets, respectively. The bounding box annotation
was chosen rather than pixel-wise annotation in this study due
to reduced time requirement and increased detection accuracy,
as indicated by Sa et al.41

CenterNet, Faster R-CNN, TridentNet, VFNet, and YOLOv3 were
pre-trained with the COCO dataset.42 YOLOv3 was trained and
tested with the Darknet (an open source neural network

Table 1. Hyper-parameters used for training object detection neural networks

Parameters CenterNet2 Faster R-CNN TridentNet VFNet YOLOv3

Batch 1 4 2 4 64
Momentum 0.90 0.90 0.90 0.90 0.90
Decay 0.0001 0.0001 0.0001 0.0001 0.0005
Learning rate 0.04 0.02 0.02 0.01 0.001
Policy Step Step Step Step Steps
Epoch 120 24 24 24 30
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framework available at https://pjreddie.com/darknet/),39 while
the training and testing of CenterNet, Faster R-CNN, TridentNet,
and VFNet were performed using mmDetection based on the
Pytorch framework (an open source deep learning framework
available at https://pytorch.org/; Facebook, San Jose, CA, USA).
For all models, training and testing were performed on a GeForce
RTX 2080 Ti with 64 GB of memory. During training, an inter-
section over union (IoU) measuring the overlap ratio between
the predicted and actual bounding boxes was employed to esti-
mate if the object detected was a true positive, with a threshold
of 0.5. Training continued until the average loss error ceased to
decrease further or the desirable parameters such as mean aver-
age precision (mAP), precision, or recall did not increase any
further.

2.3 Image classification
The image classification neural networks including AlexNet,43

DenseNet,44 Residual Network (ResNet),45 and VGGNet46 were
selected for evaluating the feasibility of using DCNNs for detec-
tion of broadleaf weed seedlings growing in wheat. AlexNet con-
sisted of eight layers, including three fully connected layers and
five convolutional layers.43 DenseNet computes multi-scale fea-
tures from the convolutional layers of DCNN-based object classi-
fier.44 DenseNet computes descriptors densely without any
regard for region of proposal windows.44 ResNet consisted of
18-layer and 34-layer residual nets.45 Instead of learning unrefer-
enced functions, ResNet was constructed by reformulating the
layers as learning residual functions with reference to the layer
inputs.45 VGGNet used in the present study is composed of
16 weight layers.46 VGGNet utilizes a stack of convolutional layers
followed by max-poling layers.46

All training and testing images were cropped into sub-images
with a resolution of 200 × 200, 300 × 300, or 400 × 400 pixels
using Irfanview. The quantity of images for the training, validation,
and testing datasets was standardized in order to compare the
results of all neural networks. A total of 24 image classification
neural networks were trained and tested. The neural networks
were trained with two separate training datasets containing dif-
ferent amounts of training images. The small training dataset con-
tained a total of 5500 negative (with no weeds) and 5500 positive
images (with weeds), while the large training dataset contained a
total of 11 000 negative and 11 000 positive images. The valida-
tion or testing dataset consisted of 150 positive and 150 negative
sub-images.
Training and testing were performed on a GeForce RTX 2080 Ti

with 64 GB of memory using the PyTorch open source deep learn-
ing framework. All neural networks were pre-trained using the
ImageNet database.47 To achieve a fair composition between

the neural networks, all neural networks were converted to the
PyTorch version by modifying the weights to the corresponding
PyTorch compositions. The hyper-parameters employed across
the experimental configurations for training are presented in
Table 2.

2.4 Evaluation
For both object detection and image classification neural net-
works, the validation and testing results are arranged in a confu-
sion matrix with four possible outcomes, including true positive
(tp), false positive (fp), true negative (tn), and false negative (fn).
In this context, a tp represents the network correctly identified
the target weeds; a fp represents the network incorrectly pre-
dicted the target weeds; a tn represents the network correctly
identified the images without the target weeds; and a fn repre-
sents the network failed to predict the true target.
Precision, recall, F1 score were calculated using the confusion

matrix to evaluate the performances of the neural networks for
detection of weeds growing in wheat. Precision is also called pos-
itive predictive value that measures the capability of the neural
network to accurately detect the target and was calculated using
the following equation:48

Precision=
tp

tp+fp

Recall measures the effectiveness of the neural network to cor-
rectly identify the target and was computed using the following
equation:48

Recall=
tp

tp+fn

F1 score is the harmonic mean of precision and recall, and mea-
sures the overall performance of the neural network, which was
computed using the following equation:48

F1 score=
2×Precision×Recall
Precision+Recall

3 RESULTS AND DISCUSSION
All object detection neural networks evaluated in the present
study failed to show acceptable performance for detection of
weed seedlings growing in wheat (Table 3). Among the object
detection neural networks tested, YOLOv3 exhibited the highest
F1 scores in the validation and testing datasets, mainly due to
high precision (≥0.96). However, YOLOv3 exhibited unacceptably

Table 2. Hyper-parameters used for training image classification neural networks

Parameter AlexNet DenseNet ResNet VGGNet

Training epochs 90 30 30 30
Solver type AdaDelta SGD Adam AdaDelta
Batch size 2 16 16 2
Batch accumulation 5 5 5 5
Learning rate policy Exponential decay Lambda Step Exponential decay
Base learning rate 0.01 0.001 0.0001 0.01
Gamma 0.95 0.95 0.95 0.95
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low recall values in the validation and testing datasets (≤0.49).
Smaller weed targets had high detection errors, particularly false
positive. A similar finding was previously noted by Sharpe
et al.16 in an effort to detect Carolina geranium (Geranium caroli-
nianum L.) in plastic-mulched strawberry (Fragaria × ananassa
Duch.) in Florida. For CenterNet, Faster R-CNN, TridentNet, and
VFNet, the precision, recall, and F1 scores never exceeded 0.68.
Overall, these results demonstrated that CenterNet, Faster
R-CNN, TridentNet, VFNet, and YOLOv3 are ineffective for detect-
ing broadleaf weed seedlings growing in wheat.
In previous studies, Dyrmann et al.49,50 evaluated several other

object detection neural networks for detection of weeds in winter
wheat, and documented low precision and recall values. It was
found that the precision and recall values of DetectNet were
0.87 and 0.46, respectively,49 whereas that of the Single Shot Mul-
tiBox Detector were 0.82 and 0.60, respectively.50 In other scenar-
ios, object detection neural networks demonstrated better
performance for weed detection. For example, Sharpe et al.28

reported that YOLOv3 effectively detected and discriminated
broadleaves, grasses, and sedges (Cyperus spp.) within the row-
middles of vegetable plasticulture with high F1 scores (≥0.93). In
bermudagrass [Cynodon dactylon (L.) Pers.] or perennial ryegrass
(Lolium perenne L.) turf, DetectNet achieved high accuracy levels
for weed detection.17,18,30 For example, Yu et al.17 achieved high
F1 scores (≥0.98) with DetectNet for detecting dandelion (Taraxa-
cum officinale Web.) in perennial ryegrass turf.
In the present study, the poor performance of weed detection

with the object detection neural networks could be attributed to
the following reasons: (i) unlike other row crops such as corn or
cotton (Gossypium hirsutum L.), wheat planted in narrow row
spacings (15 cm in the present study) resulted in high overlap
with weeds, which increased the complexity for feature extrac-
tion, (ii) the weed species exhibit significantly different plant mor-
phological features, which increased the computational
complexity for feature extraction leading to reduced recall values,
(iii) the neural networks often failed to detect weeds close to the
image edges (Fig. 1), resulting in reduced recall values, although
Yu et al.17 suggested that continuous video inputs of smart
sprayers in field applications may reduce the edge effect, and
(iv) the bounding boxes generated by neural networks often
covered all weeds when the testing images contained weeds
at a relatively lower density (Fig. 2); nevertheless, occur-
rence of weed seedlings at high densities added extra
complexity for feature extraction, leading to reduced recall
values (Fig. 1).
The low precision values suggest that the object detection neu-

ral networks are more likely to misidentify wheat as weeds, lead-
ing to potential misapplication of herbicides. The low recall

values also suggest that the object detection neural networks
are more likely to misidentify weeds. This is undesirable because
weeds would bemissed in field applications, resulting in poor her-
bicide coverage and poor weed control. In previous research,
Sharpe et al.16,51 reported that annotation method can affect the
performance of neural networks for weed detection. The authors
noted that the overall accuracy of YOLOv3 for detection of goose-
grass [Eleusine indica (L.) Gaertn.] in plastic-mulched strawberry
and tomato (Solanum lycopersicum L.) significantly improved
when the partial sections of leaf blade were annotated rather than
the entire weed plant.51 Unfortunately, it was impractical to indi-
vidually annotate such small weeds in the present study, and
automating annotation is a critical area for future research.
Because of the poor performance of object detection neural

networks, we further explored the feasibility of using some of
the image classification neural networks for detection of weed
seedlings growing in wheat. It is worth noting that tp images con-
tained weed seedlings with distinct plant morphological features
and various densities of weeds growing in close proximity with
wheat or even occluded under the wheat canopy, while tn images
contained wheat at different densities (Fig. 3). Increasing training
image numbers generally increased the F1 scores of all image
classification neural networks trained with different input image
sizes (Table 4). For the small training dataset, increasing training
image sizes decreased the F1 scores for AlexNet and VGGNet,
but increased the F1 scores for DenseNet and ResNet. However
for the large training dataset, no differences were detected
between the training image sizes since all neural networks exhib-
ited remarkable performance of classification with high F1 scores
(≥0.96) in the validation and testing datasets.
AlexNet and VGGNet trained with the small training dataset exhib-

ited similar accuracy levels and achieved high F1 scores (≥0.98) in the
training and testing datasets when the neural networks were trained
with the input images of 200 × 200pixels; however, these neural net-
works exhibited reduced F1 scores when trained with the input
images of 400 × 400 pixels (Table 4). When the neural networkswere
trained with the small training dataset, increasing image sizes
decreased the F1 scores of AlexNet and VGGNet in the validation
and testing datasets, due primarily to low recall values. In the testing
dataset, the precision and recall values of AlexNetwere 0.91 and 0.82,
respectively, whereas for VGGNet they were 0.98 and 0.85, respec-
tively, for the image size of 400 × 400 pixels. DenseNet and ResNet
showed better performances in detecting weeds growing in wheat
when they were trained with large size of training images. The F1
scores ofDenseNet and ResNetwere≤ 0.96 in the validation and test-
ing datasets when theywere trainedwith the small input image sizes
of 200 × 200 pixels; however, the F1 scores increased to ≥0.98 when
they were trained with a large input image size of 400 × 400 pixels.

Table 3. Object detection neural network validation and testing results for detection of broadleaf weed seedlings in wheat

Neural networks

Validation Testing

Precision Recall F1 score Precision Recall F1 score

CenterNet2 0.68 0.58 0.62 0.59 0.51 0.55
Faster R-CNN 0.57 0.65 0.61 0.53 0.52 0.52
TridentNet 0.61 0.56 0.58 0.42 0.58 0.49
VFNet 0.54 0.62 0.58 0.48 0.52 0.50
YOLOv3 0.96 0.49 0.65 0.97 0.45 0.62
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tYu et al.17 evaluated the use of image classification neural net-
works for detection of weeds growing in bermudagrass and
perennial ryegrass turf and found that VGGNet provided high
overall classification accuracy when the training and testing
images contained multiple broadleaf weeds with distinct plant
morphological features including dandelion (T. officinale
Web.), ground ivy (Glechoma hederacea L.), and spotted spurge
(Euphorbia maculata L.). In another research, ResNet demon-
strated better performance than VGGNet for weed detection
in Canola (Brassica napus L.).52 Further studies are needed to

investigate other image classification architectures for detec-
tion of weeds in wheat.
There has been limited research evaluating the impact of image

size on weed detection with DCNNs. Among the available reports,
the pre-trained neural networks were optimized with specific
input image sizes of 256 × 256 pixels for AlexNet43 and
224 × 224 pixels for DenseNet,44 ResNet,45 and VGGNet,46 but
our results clearly showed that input image size significantly
impacted classification performance. In general, AlexNet and
VGGNet trained with small-sized images outperformed the

Figure 1. YOLOv3 generated bounding boxes for detection of high density weed seedlings growing in wheat. The weed seedlings that were not
detected by YOLOv3 are marked with unlabeled red bounding boxes.

Figure 2. YOLOv3 generated bounding boxes for detection of low density weed seedlings growing in wheat.
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large-sized images, whereas it was the opposite for DenseNet and
ResNet (large-sized images outperformed small-sized images). In
this regard, He et al.53 noted that the choice of image size for train-
ing DCNNs is arbitrary and training neural networks with fixed-
size images may reduce recognition accuracy. Mishkin et al.54

reported a similar finding that the size of training images can sig-
nificantly impact recognition accuracy with DCNNs. Nevertheless,
in the present study, results clearly demonstrated that increasing
the number of training images can increase the precision and

recall values for the neural networks investigated, thereby dimin-
ishing the effect of training image sizes.
Various herbicides, such as synthetic auxins (e.g. 2,4-D,

dicamba, MCPA), sulfonylureas (e.g. florasulam, thifensulfuron,
tribenuron-methyl, prosulfuron), and photosystem II inhibitors
(e.g. metribuzin), are used for POST control of broadleaf weeds
in wheat.5,55–58 Autonomous robots utilizing the reliable
machine vision models can significantly reduce the input of
POST herbicides. It is important to note that smart sprayers

Figure 3. Images used for training image classification neural networks; tp represents true positive, tn represents true negative.
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relying on image classification neural networks as the decision
system cannot utilize nozzles with narrow spray patterns to tar-
get individual weeds. Nevertheless, the image classification
neural networks trained with small size images may allow the
smart sprayer to deliver herbicides to the small area containing
weeds, thus saving more herbicides compared to the networks
trained with large size images.

4 CONCLUSIONS
The evaluated object detection neural networks including Center-
Net, Faster R-CNN, TridentNet, VFNet, and YOLOv3 failed to reli-
ably detect broadleaf weed seedlings growing in wheat; the
precision and recall values in both validation and testing datasets
were low, but this issue was overcome by image classification
neural networks. When the neural networks were trained with
the small training dataset, increased classification accuracy (high
recall values) was observed with AlexNet and VGGNet when they
were trained with the images of 200 × 200 pixels than 300 × 300
or 400 × 400 pixels. Conversely, decreased classification accuracy
(reduced precision values) was noted for DenseNet and ResNet
when they were trained with the images of 200 × 200 pixels,
rather than 300 × 300 or 400 × 400 pixels. Nevertheless, increas-
ing the number of training images improved the performance of
classification for all neural networks, regardless of training image
sizes. When the neural networks were trained with the large train-
ing dataset and small size training images of 200 × 200 pixels, all
image classification neural networks demonstrated remarkable
performance at detecting weed seedlings in wheat, with high F1

score values (≥0.99). To further improve the performance of weed
detection in wheat, other DCNNs architectures may be investi-
gated in the future.
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